

Ar.Sher Singh Baghel

Centre for Sustainable Technologies (CST), Indian Institute of Science (IISc), Bengaluru, Karnataka

E-mail id-

shersinghb12@gmail.com

Sher Singh Baghel is an accomplished architect with over a decade of experience in architectural design, academia, and consultancy. Passionate sustainability about and culturally resonant spaces, he has contributed to prestigious heritage conservation and redevelopment projects in Mathura in collaboration with The Braj Foundation. His expertise spans residential, commercial, urban and development projects. blending traditional architectural principles with modern sustainable practices. He is a life member of INTACH and the Council of Architecture. with a commitment to sustainable innovation, education, and practices.

Reducing Carbon Footprints in Construction: The Impact of BIM and Digital Twins

Abstract:

The construction industry significantly contributes to global carbon emissions, necessitating innovative solutions for sustainability. Building Information Modeling (BIM) and Digital Twin technologies offer a transformative approach to achieving carbon-neutral construction. BIM enables efficient resource management, energy optimization, and material waste reduction, while Digital Twins provide realtime monitoring and predictive analytics to enhance operational efficiency. By integrating these technologies, the industry can minimize embodied and operational carbon, optimize renewable energy integration, and ensure regulatory compliance. This paper explores how BIM and Digital Twins complement each other in reducing environmental impact and advancing global sustainability initiatives.

Keywords:

Building Information Modeling (BIM), Digital Twin, Carbon-Neutral Construction, Energy Efficiency, Sustainable Building Technologies

1. Introduction:

The construction industry is responsible for nearly 40% of global carbon emissions through embodied carbon (materials, construction processes) and operational carbon (energy use in buildings). Building Information Modeling (BIM) and Digital Twin technologies play a crucial role in reducing these emissions and achieving carbon neutrality in construction. BIM is a digital representation of a building's physical and functional characteristics. It enables stakeholders to collaborate effectively throughout the lifecycle of a building.

A Digital Twin is a real-time digital replica of a physical asset that enables continuous monitoring and optimization. When applied to buildings, Digital Twin technology enhances energy efficiency in several ways. BIM enhances resource efficiency by enabling precise material quantification, reducing excess ordering, and minimizing construction waste by up to 30% through optimized material use and prefabrication. Twins complement this Digital bv providing real-time monitoring of material consumption, identifying inefficiencies, and enabling corrective actions during construction, further supporting sustainability and cost savings. Additionally, BIM aids in designing energy-efficient HVAC systems bv optimizing duct layouts and thermal insulation. while Digital Twins dynamically adjust heating and cooling based on occupancy and weather conditions, reducing energy consumption by up to 30%. These technologies collectively drive the construction industry toward zero waste and carbon neutrality, making buildings more sustainable, costeffective, and environmentally responsible (Badenko et al., 2024).

BIM enables designers to simulate energy efficiency strategies early in the design phase, ensuring buildings align with netzero energy goals through performancebased design, integrating passive solar heating, daylighting, and high-performance insulation. Digital Twins enhance this by providing real-time energy performance monitoring, optimizing HVAC, lighting, and insulation dynamically to reduce operational carbon emissions, achieving up to 40% energy savings. Additionally, BIM and Digital Twins facilitate the integration of renewable energy sources by assessing and optimizing solar panels, wind turbines, and geothermal systems. Digital Twins continuously monitor and adjust renewable energy output based on weather conditions and demand, allowing buildings to generate their energy, reduce reliance on fossil fuels, and lower operational carbon emissions, with studies showing a 50% reduction in grid electricity dependence through BIMbased solar energy modeling (Liu et al., 2025).

Tracking emissions throughout a building's lifecycle is one of the biggest challenges in achieving carbon neutrality, and BIM plays a crucial role by enabling precise carbon footprint calculations, considering both embodied carbon in materials like cement, steel, and glass and operational carbon from heating, cooling, and electricity use. Digital Twins enhance this by continuously collecting real-world emissions data. offering instantaneous carbon analytics that aid in carbon offset planning and ensure real-time compliance with green building certifications like LEED and BREEAM. With governments and industry bodies enforcing stricter carbon regulations, BIM streamlines regulatory compliance by embedding carbon emission calculations into building models, while Digital Twins provide real-time reports on carbon footprint, energy usage, and material efficiency for Environmental, Social, and Governance (ESG) reporting. This transparency helps businesses demonstrate sustainability efforts, secure green funding, and avoid penalties for carbon-intensive construction, with companies using Digital Twin technology reporting 20-30% lower emissions, faster regulatory approvals, and increased investor confidence in sustainable projects (Rose Morrison, 2022). The construction industry is experiencing a digital transformation with technologies like Building Information Modeling (BIM)

and Digital Twin playing a crucial role in optimizing energy efficiency. With rising concerns about climate change and sustainable development, adopting these technologies is essential for designing and managing energy-efficient buildings. This paper explores how BIM and Digital Twins improve energy performance in the construction sector.

2. Methodology

This study employs a qualitative, literaturebased methodology grounded in secondary research that follows a narrative review approach. systematically collecting. analyzing, and synthesizing findings from academic literature, institutional reports, and case studies related to BIM, Digital technologies. and sustainable Twin construction. Sources were selected based on relevance, recency from the last decade (specifically published between 2013 and 2025), and alignment with the study's thematic focus on carbon reduction, energy efficiency, lifecycle assessment, and digital transformation in the built environment.

Keyword-driven searches were performed using various databases, including ScienceDirect, Google Scholar, MDPI, SpringerLink, and Elsevier. Some of the included "BIM keywords carbon reduction," "Digital Twin energy optimization," "smart buildings," "net-zero buildings," and "sustainable construction technologies." The review prioritized materials that addressed intersections between digital construction technologies and global sustainability goals, particularly the United Nations SDGs (SDG 7, 11, 12, and 13), the Paris Agreement on Climate Change, the EU Green Deal, and the Circular Economy Action Plan. Data analysis, synthesis involved thematic

identifying core areas of application such as energy optimization, carbon footprint reduction. regulatory compliance, renewable energy integration, and predictive maintenance. The review also highlights measurable impacts and implementation challenges, providing a comprehensive framework for understanding the environmental benefits of BIM and Digital Twin integration in construction.

3. BIM and Digital Twins: Key Differences and Synergies for Green Construction

BIM is essential for pre-construction carbon reduction, optimizing materials and energy-efficient design, while digital twins drive operational carbon neutrality, ensuring real-time energy and waste management (Abdelalim et al., 2024; Arsecularatne et al., 2024; Cespedes-Cubides & Jradi, 2024; Jiang et al., 2024; Jradi, 2024). BIM and Digital Twins create a holistic approach to achieving carbonneutral construction (Deng et al., 2021). A comprehensive comparison between BIM and digital twins in the context of carbonneutral construction is shown in Table 1 below.

Table 1: BIM vs. Digital Twin- A ComparativeAnalysis for Carbon-Neutral Construction

Aspect	BIM	Digital Twin	
Definition	A static digital model for planning, designing, and managing buildings	A real-time, data-driven replica of a physical asset, integrating AI, IoT, and analytics	
	(Khattra & Jain,	(Dihan et al., 2024).	
	2024).	,	

			1		and	efficiency and
Stage of Use	Primarily in the design and constructi on phases (Khattra & Jain, 2024).	Primarily in the operation and maintenance phase (Bao & Bu, 2025).			and modular materials selection in the design phase (Zheng et al., 2025).	efficiency and waste management during building operations (Barth et al., 2023).
Carbon Footprint Reduction	Optimizes materials and processes to reduce embodied carbon (Heydari & Heravi, 2023).	Tracks real- time emissions, energy use, and carbon footprint across the lifecycle (Arsecularatn e et al.,		Smart Material Managemen t	Optimizes material selection for low carbon impact (Heydari & Heravi, 2023).	Uses IoT and AI to monitor material degradation and replacement needs (Dihan et al., 2024).
Energy Efficiency	Simulates building performan ce to optimize energy efficiency before constructi on	2024). Continuously monitors and adjusts energy consumption dynamically (Yeom et al., 2024).		Smart Building Operations	Helps design energy- efficient systems but lacks real-time adaptation (Pereira et al., 2021a, 2021b).	Adapts to occupant behavior, climate, and energy demand dynamically (Lee et al., 2025).
Lifecycle Perspective	(Pereira et al., 2021a). Focuses on early- stage design and initial maintenan ce (Heydari & Heravi,	Covers entire lifecycle, including retrofitting and decommissio ning.		Predictive Maintenanc e	Provides preventive maintenan ce schedules based on initial design parameter s (K. Das et al., 2025).	Uses real- time data and AI to predict failures, reducing maintenance costs (Dihan et al., 2024).
Data Integration	2023). Uses static 3D models and historical data (Khattra & Jain, 2024).	Integrates IoT sensors, real- time AI, and predictive analytics (Dihan et al., 2024).		Compliance & Policy Integration	Helps ensure complianc e with LEED, BREEAM , and green building regulation	Ensures continuous compliance with evolving sustainability policies using real-time monitoring (Alhadi et al., 2025).
Circular Economy	Supports recyclable	Tracks resource			s at the design	,

STHALA/ISSN 2582-9491

		,
	stage (Di Gaetano et al., 2023).	
Waste Reduction	Reduces constructi on waste by optimizing design and prefabricat ion (Zheng et al., 2025).	Minimizes operational waste through sensor-based optimization (Barth et al., 2023).
Sustainabili ty Compliance	Aids in obtaining green building certificatio ns before constructi on (Abdel- Hamid et al., 2025).	Ensures ongoing compliance with energy efficiency and sustainability regulations (Alhadi et al., 2025).
Automation & AI	Limited AI, mainly for design automatio n (Pereira et al., 2021b).	Uses machine learning for real-time adjustments and automated energy management (O. Das et al., 2024).
Cost Efficiency	Reduces costs in design, materials, and labor (K. Das et al., 2025)	Reduces long-term operational costs via predictive analytics (Omoniyi Babatunde Johnson et al., 2024).
Interoperab ility	Works within architectur al and engineerin g platforms (Dihan et al., 2024).	Connects with BIM, IoT devices, smart grids, and urban digital twins (Dihan et al., 2024).

4. BIM and Digital Twin: Driving Carbon-Neutral Construction in Line with Global Initiatives

Table 2 offers a structured and dataenriched overview of how BIM and Digital Twin technologies contribute to sustainable construction across key functional areas. It systematically connects each technological application with its associated benefits, implementation challenges, alignment with major global climate goals (including the UN SDGs and the Paris Agreement), and quantitative performance metrics drawn from recent studies. The table emphasizes the dual role of these technologies in reducing environmental impacts, such as improving energy efficiency, minimizing material waste, and enabling renewable energy integration, while also revealing practical hurdles that must be addressed for successful deployment at scale.

The comparative insights highlight that BIM and Digital Twins are vital tools in advancing low-carbon and resourceefficient construction practices. For example, Digital Twins can lead to up to 40% energy savings through real-time building performance optimization, while BIM-driven prefabrication has been shown to reduce construction waste by up to 30% (Yeom et al., 2024; Liu et al., 2025; Zheng et al., 2025). These technologies not only optimize initial design and material use but also ensure continuous operational monitoring, enabling buildings to achieve carbon neutrality across their workflow and lifespans. Despite the diverse and several potential of these technologies, their adoption is hindered by challenges such as high implementation costs, fragmented data systems, and a lack of standardized carbon assessment methods. Nonetheless, the evidence presented reinforces their capacity

to drive transformative change in the built environment, paving the way toward climate-resilient, smart, and sustainable infrastructure in the decades ahead.

Table 2: Integrating BIM and Digital Twins forSustainable Construction and Global Complaince

Aspect	Applications	Benefits	Challeng es	Alignment with Global Initiatives	Result
Energy Efficienc y	Real-time energy performance monitoring, optimizing HVAC & lighting systems	Reduced energy consum ption, improve d occupan t comfort	Data integratio n issues, need for IoT sensors	UN SDG 7 (Affordable & Clean Energy), Paris Agreement	Up to 30-40% reduction in energy consumption (Yeom et al., 2024; Liu et al., 2025)
Lifecycle Carbon Analysis	Embedded carbon assessment of materials, monitoring embodied & operational carbon	Lower carbon footprint , informe d material selectio n	Lack of standardiz ed carbon databases	Net Zero Carbon Buildings Commitment, LEED, BREEAM	BIM enables 20- 25% reduction in embodied carbon through optimized design (Heydari & Heravi, 2023)
Smart Construc tion & Prefabric ation	Off-site modular construction, digital twin for real-time tracking	Reduces waste, lowers emissio ns from transpor tation	High initial investmen t in digital twin technolog y	EU Green Deal, Sustainable Development Goals (SDG 11 - Sustainable Cities & Communities)	Prefabrication can reduce construction waste by up to 30% (Zheng et al., 2025)
Waste Reductio n	Simulation of construction processes to minimize material waste	Lower landfill impact, cost savings	Resistanc e to digital transform ation	Circular Economy Action Plan (CEAP), SDG 12 (Responsible Consumption & Production)	Up to 90% construction waste reduction with BIM-based design optimization (Barth et al., 2023)

Aspect	Applications	Benefits	Challeng es	Alignment with Global Initiatives	Result
Renewabl e Energy Integratio n	Simulation of solar & wind energy potential for buildings	Maximize d on-site renewable energy use	High initial setup cost for renewable tech	RE100 Initiative, SDG 13 (Climate Action)	BIM-assisted solar modeling reduces grid electricity dependency by 50% (Liu et al., 2025)
Carbon Capture & Offsetting	Digital Twin modeling of green walls, carbon- absorbing materials	Increased carbon sequestrat ion in built environm ents	Lack of robust carbon offset measurem ent	Science-Based Targets Initiative (SBTi), Carbon Neutral Cities Alliance	Estimated 15– 20% of operational carbon can be offset via green envelope strategies (O. Das et al., 2024)

5. Conclusion

BIM and Digital Twin technologies collectively represent a paradigm shift in how the construction industry addresses carbon reduction, operational efficiency, and sustainable development. On one hand, BIM provides value during the planning and design stages through simulation, prefabrication, and optimized resource allocation, while Digital Twins extend these benefits into the operational phase, offering real-time monitoring, dynamic performance management, and predictive analytics. Together, these technologies support measurable reductions in embodied and operational carbon, improve building performance, and enhance energy alignment with green building certifications such as LEED and BREEAM.

This paper demonstrates that the integration of BIM and Digital Twin technologies is more than a technical evolution; it is a strategic response to pressing environmental challenges and policy mandates. By aligning their implementation with global sustainability frameworks such as the UN SDGs and the Paris Agreement, these tools provide scalable and data-driven pathways toward infrastructure that can withstand climate impacts. However, realizing their full potential requires overcoming challenges such as high initial costs. data interoperability issues, and a lack of standardization in carbon accounting. Future work should focus on creating unified carbon assessment standards, increasing accessibility of IoT-enabled platforms, and fostering collaboration between policymakers, technologists, and construction professionals. Ultimately, the fusion of digital innovation and environmental stewardship will be central to achieving net-zero targets and building smarter, greener cities of tomorrow.

6. References

- Abdel-Hamid, M., Abdelhaleem, H. M., & Abd El-Razek Fathy, A. E. (2025). Assessing the implementation of BIM for enhancing green building certification evaluations. *Architectural Engineering and Design Management*. https://doi.org/10.1080/17452007.2025.2482673
- 2. Alhadi, A., Tom, B., & Yacine, R. (2025). Enhancing asset management: Integrating digital

twins for continuous permitting and compliance - A systematic literature review. In *Journal of Building Engineering* (Vol. 99). Elsevier Ltd. https://doi.org/10.1016/j.jobe.2024.111515

- Arsecularatne, B. P., Rodrigo, N., & Chang, R. (2024). Review of reducing energy consumption and carbon emissions through digital twin in built environment. In *Journal of Building Engineering* (Vol. 98). Elsevier Ltd. https://doi.org/10.1016/j.jobe.2024.111150
- Badenko, V., Bolshakov, N., Celani, A., & Puglisi, V. (2024). Principles for Sustainable Integration of BIM and Digital Twin Technologies in Industrial Infrastructure. In *Sustainability (Switzerland)* (Vol. 16, Issue 22). Multidisciplinary Digital Publishing Institute (MDPI).

https://doi.org/10.3390/su16229885

- Bao, S., & Bu, H. (2025). Defining and generating operation and maintenance management requirements in digital twin applications using the DT-GPT framework. *Journal of Building Engineering*, 104. https://doi.org/10.1016/j.jobe.2025.112356
- Barth, L., Schweiger, L., Benedech, R., & Ehrat, M. (2023). From data to value in smart waste management: Optimizing solid waste collection with a digital twin-based decision support system. *Decision Analytics Journal*, *9*. https://doi.org/10.1016/j.dajour.2023.100347
- Cespedes-Cubides, A. S., & Jradi, M. (2024). A review of building digital twins to improve energy efficiency in the building operational stage. In *Energy Informatics* (Vol. 7, Issue 1). Springer Nature. https://doi.org/10.1186/s42162-024-00313-7
- Das, K., Khursheed, S., & Paul, V. K. (2025). The impact of BIM on project time and cost: insights from case studies. *Discover Materials*, 5(1). https://doi.org/10.1007/s43939-025-00200-2
- Das, O., Zafar, M. H., Sanfilippo, F., Rudra, S., & 9. Kolhe, M. L. (2024). Advancements in digital twin technology and machine learning for energy systems: A comprehensive review of applications in smart grids, renewable energy, and electric vehicle optimisation. In Energy Conversion and Management: Х (Vol. 24). Elsevier Ltd. https://doi.org/10.1016/j.ecmx.2024.100715
- Deng, M., Menassa, C. C., & Kamat, V. R. (2021). From BIM to digital twins: A systematic review of the evolution of intelligent building representations in the AEC-FM industry. *Journal of Information*

Technology in Construction, 26, 58–83. https://doi.org/10.36680/J.ITCON.2021.005

- Di Gaetano, F., Cascone, S., & Caponetto, R. (2023). Integrating BIM Processes with LEED Certification: A Comprehensive Framework for Sustainable Building Design. *Buildings*, 13(10). https://doi.org/10.3390/buildings13102642
- Dihan, M. S., Akash, A. I., Tasneem, Z., Das, P., Das, S. K., Islam, M. R., Islam, M. M., Badal, F. R., Ali, M. F., Ahamed, M. H., Abhi, S. H., Sarker, S. K., & Hasan, M. M. (2024). Digital twin: Data exploration, architecture, implementation and future. In *Heliyon* (Vol. 10, Issue 5). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2024.e26503
- Heydari, M. H., & Heravi, G. (2023). A BIM-based framework for optimization and assessment of buildings' cost and carbon emissions. *Journal of Building Engineering*, 79. https://doi.org/10.1016/j.jobe.2023.107762
- Jiang, Y., Su, S., Zhao, S., Zhong, R. Y., Qiu, W., Skibniewski, M. J., Brilakis, I., & Huang, G. Q. (2024). Digital twin-enabled synchronized construction management: A roadmap from construction 4.0 towards future prospect. In *Developments in the Built Environment* (Vol. 19). Elsevier Ltd. https://doi.org/10.1016/j.diba.2024.100512

https://doi.org/10.1016/j.dibe.2024.100512

- 15. Jradi, M. (2024). Transforming construction: digital twin technology for site monitoring and optimization in Denmark. *Smart Construction*. https://doi.org/10.55092/sc20240015
- Khattra, S. K., & Jain, R. (2024). Building Information Modeling: A Comprehensive Overview of Concepts and Applications. *Advances in Research*, 25(5), 140–149. https://doi.org/10.9734/air/2024/v25i51145
- Lee, K. S., Shah, I., Aucremanne, C., Lee, J. J., & Ghahramani, A. (2025). Exploring digital twin interfaces for occupant-building interaction to enhance personal comfort and energy efficiency. *Energy and Built Environment*. https://doi.org/10.1016/j.enbenv.2025.03.005
- Liu, Z., Li, M., & Ji, W. (2025). Development and application of a digital twin model for Net zero energy building operation and maintenance utilizing BIM-IoT integration. *Energy and Buildings*, 328. https://doi.org/10.1016/j.enbuild.2024.115170
- Omoniyi Babatunde Johnson, Yodit Wondaferew Weldegeorgise, Emmanuel Cadet, Olajide Soji Osundare, & Harrison Oke Ekpobimi. (2024). Developing advanced predictive modeling techniques for optimizing business operations and

reducing costs. Computer Science & IT Research Journal, 2627-2644. 5(12), https://doi.org/10.51594/csitrj.v5i12.1757

- 20. Pereira, V., Santos, J., Leite, F., & Escórcio, P. (2021a). Using BIM to improve building energy efficiency - A scientometric and systematic review. In Energy and Buildings (Vol. 250). Elsevier Ltd. https://doi.org/10.1016/j.enbuild.2021.111292
- 21. Pereira, V., Santos, J., Leite, F., & Escórcio, P. (2021b). Using BIM to improve building energy efficiency - A scientometric and systematic review. In Energy and Buildings (Vol. 250). Elsevier Ltd. https://doi.org/10.1016/j.enbuild.2021.111292
- 22. Rose Morrison. (2022, August 12). How Can BIM and Digital Twins Reduce Carbon Footprints? Geo Week News. https://www.geoweeknews.com/news/how-canbim-and-digital-twins-reduce-carbon-footprints
- 23. Yeom, S., Kim, J., Kang, H., Jung, S., & Hong, T. (2024). Digital twin (DT) and extended reality (XR) for building energy management. In Energy and **Buildings** (Vol. 323). Elsevier Ltd. https://doi.org/10.1016/j.enbuild.2024.114746
- 24. Zheng, B., Yang, Y., Chi, H.-L., Luk, C., & Chan, A. (2025). Development of a BIM-based application for visualizing the reuse and recycling potential of modular building systems. Journal of Building 112500. Engineering, 105. https://doi.org/10.1016/j.jobe.2025.112500

